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= Recent work has shown that it is possible to predict surface parameters measured
Q) digitally from a surface profile by means of three points on the autocorrelation
O function. The weakness of this work has been that only one-dimensional parameters
=wu have been evaluated. The present contribution extends the theory to include two-

dimensional parameters of the surface which are expressed in terms of between four
and seven points on the autocorrelation function depending on the type of surface.
It is shown that this technique provides an alternative to traditional mapping methods.

It is shown also that as a general rule results obtained from the discrete analysis do
not converge to those obtained from the continuous theory. The nature and magnitude
of the differences between the two approaches are discussed in detail.

Finally, the theoretical results are confirmed experimentally and the general
significance of discrete methods reviewed.
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442 D.J. WHITEHOUSE AND M. J. PHILLIPS

1. INTRODUCGTION

During the last few years two extra considerations have emerged to constrain the normal use
and manufacture of machined parts. These are the need to conserve energy and the need to
conserve material. The main objective of this contribution is to attempt to quantify ways in
which the performance of parts can be predicted before the final assembly of the individual
components is carried out. Any degree of success in this endeavour will help to reduce the
amount of wasted time, material and energy which inevitably result when break-downs occur.

In many critical cases the performance of an engine, machine or device is influenced by the
mechanism by which two solid parts make static or sliding contact. A crucial factor in this
mechanism is the geometry of the surfaces in contact. To control the work-piece performance
it is necessary to control the surface geometry, which must therefore be measured. This measure-
ment is not an easy task. Much effort has been expended in the past to develop methods
whereby the two-dimensional characteristics of surfaces can be assessed. There are two possible
solutions to this problem: one is to develop ways of surveying all of the areas in contact;
the other is to find simple instrumental ways of predicting the relevant information from
limited data. It is the latter, cheaper option that has been selected for investigation in this
paper.

The first problem to be resolved is the nature of the information required. Current thinking
suggests that the important features would include the heights of summits, their curvatures and
slopes, and the general statistical distributions of these variables.

Initially, ideas on which parameters were important in contact phenomena were few. In
fact, it is only since the pioneering work of Bowden & Tabor (1954) that surface topography
has been recognized as being of vital importance in contact phenomena.

Once it is realized that topography is important, the question arises as to which parameters
of the surface are most important, and whether it is necessary to measure two-dimensional as
distinct from one-dimensional characteristics. Among the first workers to attempt to resolve
the problem of the functional significance of surface parameters were Greenwood & Williamson
(1966) who derived an index of plasticity ¥, given by

E (o\%
¥, = H(%)E: (1.1)

where E is the elastic modulus, / is the hardness, & is the r.m.s. value of the peak height dis-
tribution and 1/R is the peak curvature, which for this model is assumed constant for all peaks.
Using the premise that the heights of peaks have a Gaussian distribution, they imposed limits
on the value of ¥, to explain contact behaviour. For ¥; > 1 a large part of the contact would
be plastic but for ¥, < 0.6 the chances of the plastic flow of asperities would be remote.
Various other attempts have been made to devise numerical indexes to predict the elastic—
plastic behaviour of surfaces. Whitehouse & Archard (1970) modified equation (1.1) to allow
for a distribution of curvature of asperities in the one-dimensional profile of a surface. Further-
more, they related ¥ to profile parameters rather than asperity models. Thus, ¥; became ¥,,

where Eo
¥, = 0.69 =~. (1.2)
Hp

In (1.2) o, the r.m.s. of the surface profile height, replaces &, the r.m.s. of the peak height
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distribution. Instead of R, the average radius, a new parameter is used: this is ﬁ which is a
measure of the independence distance or correlation length of the surface.

Other indices, such as ¥, introduced by Mikic (1974), concentrated on slope information
rather than height and length parameters separately:

¥, = (E/H) tan 0, (1.3)

where tan 6 is the absolute mean slope of the surface profile. The index ¥, is such that at
least 29, of the asperities will deform plastically when ¥, > 0.25. For ¥, < 0.25 contact
would be predominantly plastic. Tabor (1975) pointed out that it is possible to consider the
o/ ﬁ ratio in (1.2) as a slope, in which case there is very little difference between ¥, and ¥,.

Gupta & Cook (1972) defined a topographic index ¥, in two dimensions as the ratio of real
to apparent area of contact:

1 1

(2D} Ry

Tl .

v, , (1.4)
where Dy is the average number of summits per unit area, R, is the harmonic mean of the
average radius of asperities of the two surfaces making the contact and E is the harmonic mean
of the elastic moduli.

Another attempt to devise a two-dimensional index of plasticity has been made by Nayak
(1971) using two-dimensional random process theory. His results, however, were dependent
on results reported by other workers (Pullen & Williamson 1972) and these results have since
been queried. Nayak’s index ¥ is given by

W, = (E/H)o}, (1.5)

where o7 is the r.m.s. value of the differential of that component of a surface in contact which
has a narrow band spectrum. For ¥; > 5 most of the asperities deform plastically.

Other workers have approached the problem somewhat differently, but at least one general
conclusion can be reached. This is that the ratio of £/H, which represents the physical rather
than the geometrical properties of the surfaces in contact, is fundamental. This ratio has often
been combined with various differential characteristics of the surfaces to yield an index. Also,
many workers have found during their investigations that the scale of size of asperity is also a
critical factor in contact behaviour (Jones ef al. 1975).

However, agreement as to which topographic parameter is most important is unlikely to be
reached, at least in the foreseeable future. It may never be possible or even necessary because
the most significant parameter or combination of parameters ultimately depends on the appli-
cation of the surface. For example, Fuller & Tabor (1975) have derived an index describing
how surface characteristics influence the adhesive behaviour between components. They
showed that for elastic contact there would be negligible adhesion unless

Edt/(RAy)} < 10, (1.6)

where Ay is the surface energy density and R is the peak radius.

Another important practical situation occurs in those circumstances, such as in lubrication,
where a fluid separates two bodies nominally in contact. Here it is the presence of peaks at
given levels above the mean line, rather than their curvature, that is the dominant factor.


http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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As an example, Dawson (1962) found that the ratio of d;/o, is important in pitting, where o
is the r.m.s. value of the surface height and d, is the fluid film thickness. Dyson (1976) modified
Reynold’s equation to include surface texture and showed that the correlation length of the
surface was significant in determining the pressure and shear flow generated by movement.

The texture has also been shown to be an important feature in determining the amount of
wear between rubbing bodies (Hirst & Hollander 1974), except when very high shear forces
are involved (Suh 1973).

Although a survey of the effect of texture on these and related subjects (Whitehouse 1978)
has shown that great progress has been made in understanding the mechanism of contact, in
most instances only one-dimensional texture parameters have been used. Obviously, because
contact is fundamentally two-dimensional, it would be more realistic to incorporate the two-
dimensional surface parameters but, unfortunately, even with today’s sophisticated instruments
the complete measurement of such parameters is impossible. What is needed is a relatively
simple way of measuring all the topographic features that could be important, such as the
curvature and distributions of the two-dimensional summits. Furthermore, this information
should ideally be capable of being broken down into ‘size’ components, a point that is im-
portant because it has been shown that surface parameter values, as such, are not intrinsic to
the surface, but that the value obtained from a particular investigation depends on the ‘scale
of size’ considered.

Taking first the ‘scale of size’ problem, Whitehouse & Archard (1970) attempted to find a
solution for the one-dimensional profile by noting the fact that surfaces are invariably assessed
by using digital analysis. Therefore, they investigated the discrete rather than the continuous
properties of random waveforms. They considered that a surface profile could be represented
by height ordinates, having a Gaussian distribution, which were related spatially along the
surface by an exponential autocorrelation function. Using this model for a surface, they evaluated
the topographic parameters of significance in tribology in terms of the r.m.s. value of the
profile height and one point of the autocorrelation function. The restriction to the exponential
autocorrelation function was relaxed by Whitehouse & Phillips (1978) who were able to
predict the same, and other, peak parameters for surfaces having a general autocorrelation
function. They used the r.m.s. value of the profile height and two points of the autocorrelation
function. The validity of such an approach has since been demonstrated, for example by
Hamed & Whitehouse (1979).

The discrete method described above can save much time and effort in programming and
data acquisition because so little information needs to be obtained before an estimate of the
many useful parameters can be made.

It is the intention of this paper to extend the discrete approach to the more realistic two-
dimensional surface.

2. DISCRETE MEASUREMENT OF SURFACES IN TWO DIMENSIONS
2.1. Definitions of summit density, height and curvature

When the discrete properties of the one-dimensional profile are being investigated, the data
consist simply of a set of digital measurements, called ordinates, taken along the profile and
separated from one another by equal increments 4. For the two-dimensional surface the prob-
lem is more complicated, and a grid of data points taken over the surface is required. Similarly,
definitions become more complicated.
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In one dimension a continuous definition of a local maximum or peak on a profile only
requires one first-order and one second-order differential, and only three ordinates are needed
for the discrete definition of a peak. However, in two dimensions, the continuous definition of
a locdl maximum (or summit, in the terminology of Nayak (1971)) requires two first-order and
three second-order differentials, and a minimum of five ordinates are needed for the discrete
definition of a summit. Sayles & Thomas (1977) gave two discrete definitions of a summit:
one using the five nearest-neighbour ordinates, and the other nine. In this paper the five-
ordinate definition will be used. The definition states that an ordinate at height z, above an
arbitrary datum is a five-point summit if it is higher than the four neighbouring ordinates,
which are at a distance 4 from it, on the two orthogonal Cartesian axes. If the differences
between z; and each of the four neighbouring ordinates are denoted by sy, 55, s3 and s,, then
the condition for the ordinate z, to be a summit is that s;, s,, 53 and s, are all positive.

The summit density is the proportion of ordinates that are summits. The summit height is
the height z, of an ordinate that is a summit.

It seems natural to extend to two dimensions the discrete definition of Whitehouse & Archard
(1970) for peak curvatures, which was given by

e = (s1+53) /P2, (2.1)

where 5; and s, are defined in (2.3). This extension uses the average orthogonal peak curvatures,
and gives the discrete definition of five-point summit curvature as

¢ = L(sy+Sa+53+5,) /R, (2.2)

which again is a linear combination of the ordinates.

2.2. The expected summit density and the distributions of summit height and curvature

The distributions of peak height and curvature for a profile in one dimension were obtained
by Whitehouse & Phillips (1978) for a surface with ordinates from a Gaussian (normal) distri-
bution. (A multivariate normal distribution for a vector ¥ will be denoted by Y~ N[u; V]
where u is the vector of means and V is the variance—covariance matrix, and the probability
density function is given by ¢™(y’—p’; V).) They obtained these results from the theory of
truncated random variables. This was because the peak height distribution is the conditional
distribution of ¥;, the profile height, given that §; and S, are positive, or, in other words, the
distribution of ¥, conditional on §; and $, being positive, where

Sy = Yo=Y, S =7Y,—7Y, (2.3)

and Y_; and ¥, are the preceding and succeeding ordinate values, respectively, on the profile.
Similarly the distribution of peak curvature is the conditional distribution of C), given that .S,
and S, are positive. Hence the results of Whitehouse & Phillips (1978) were obtained by using
the results of the Appendix for truncated random variables, with m = 2, ¥, = Z,, X = (2—
201)74 (S, S5), d = (3~14p1)t and
V= [ 1 %(1_2,01"'/)2)/(1_/71)]
$(1—2p1+p,) /(1—py) 1 ’

where py = p(h), py = p(2h).
The derivations given in the Appendix can also be used to obtain the more important two-
dimensional distributions of five-point summit height and curvature. For this analysis the
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surface height measurements will be assumed to have a multivariate normal distribution and
because the surface is assumed to be isotropic, the distribution properties of a profile are
invariant with respect to the direction of the profile. Hence

(ZO’ (2—2p1)_% (Sla S2: S33 S4)) ~ N[03 V5], (2'4)
1 d d d d
d 1 a b b
where Vi=1d a 1 b bf, (2.5)
d b b 1 a
d b b a 1
with d = (3—1py)}, (2.6)
a = }(1-2p,+p,)/(1=p1)s (2.7)
and b = H1=2p,+py)/(1-py), (2.8)

where p; = p(h), py = p(2h), ps = p(J2h), p(t) is the correlation coefficient between ordinates
a distance ¢ apart.

If ¥ is the event {§; > 0,8, > 0,8; > 0,5, > 0} thenthe expected five-point summit
density is the probability of ¥ occurring, and the distribution of five-point summit height is
the conditional distribution of Z, given that ¥; has occurred. These can be obtained from
the results of the Appendix with m = 4,

= (2—=2p,)"}(Sy, S,y S5, S)’, (2.9)

d = (}-1p)} (2.10)

and V obtained from V; by removing the first row and column (and denoted by V,), so that

A = 14+a+2b. (2.11)

Then, from (A 11), the probability density function of the five-point summit height distribution

is given by Flalt) = DO(z,[(1— pg({)((:)+£l))]g Vc)¢(zo) (2.12)
1 ac be be

where Ve = Zz ;c ’;“ zz , (2.13)
be be ac 1

ac = (p2—p3)/(1—p}) (2.14)

and be = (py—pD)/(1—p3). (2.15)

From (A 12), the expected (or average or mean) five-point summit height is given by E(Z,|75),
where E denotes the statistical expectation:

E(z|1y) = A=l T80 By, (2.16)
1-62 a-02 b(1—a)
where B, =| a-0b? 1-52 b(1—a)l. (2.17)

b(1—a) b(1—a) 1-—a?
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From (2.16) it can be seen that the expected five-point summit height depends on two
orthant probabilities ®®(0; B,) and ®®(0; V,), which have to be evaluated. From David
(1953), P9(0; B,) is given by

P9(0; B,) = $—(4n)~tarccos [(a—b2)/(1—b2)]
—(2n)~1 arccos {b(1 —a) [(1 —a?) (1 —52)]-3}. (2.18)
Cheng (1969) has evaluated @¥(0; V,), the expected five-point summit density, using Plackett’s

(1954) method. As this orthant probability only depends on the parameters a and b, given by
(2.7) and (2.8), it will be denoted by @¥[a, 5]. Then

pr (1) = P9z, 8]
b (4)
— g, 0]+ 2201 g
0

= [} + (2n)~! arcsin a]2+ (2r)~1 arcsin b
#7107 avcsin [11—0) (1 + 020 7], £19)

This result was given by Cheng (1969) in terms of the dilogarithm function (see Lewin 1958).
The distribution of a five-point summit having a height Z, conditional on a curvature C{
is normal, and with the aid of the result of (A 8) and (A 4) it is given by

(Z,|C? = ¢P) ~ N[R(14a+2b)1cP, 1—2(1—p,)/(1+a+2b)]. (2.20)

This is henceforth called the conditional distribution of summit height given curvature. Thus
the expected five-point summit curvature is given by
E(CP|Y;) = h2(1+a+2b) E(Z,|Y5), (2.21)
with the use of (2.16).
Hence by the application of the theory of Gaussian (normal) truncated random variables
it has been possible to obtain the expectations of the five-point summit height, curvature
and density.

2.3. The effect of the sampling interval and limiting results

The distributions of five-point summit height and curvature have been derived in terms
of the correlation coefficients between ordinates. These correlation coefficients are p,, for
ordinates a distance % apart, p,, for ordinates 24 apart, and p;, for ordinates 4/ 2k apart. If the
surface is isotropic and the autocorrelation function is p(¢), then p, = p(k), p, = p(2h) and
ps = p(/2h). So py, p, and pg will vary as & varies, depending on the shape of the autocorrelation
function of the surface.

As h approaches zero
lim py(h) = lim py(h) = lim py(h) = 1, (2.22)
h—0 h—>0 h—0

and as & approaches infinity
lim py(h) = lim py(h) = lim ps(h) = 0. (2.23)
h—> h—>c0 h—>

If p;, p, and pg are plotted in three dimensions then as 4 varies the curve will start at (1, 1, 1)

for 2 = 0 and end at (0, 0, 0) for 2 = +c0. In order that the matrix ¥V, —d?J be positive definite
it is necessary for this curve to lie in the region bounded by

pe <1
and =31 +p5) +2p% < ps < (1 +p,)-
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Results for the summit height have been obtained by Nayak (1971) for the continuous
surface. So it is possible to compare his results with those obtained for the discrete results of
§2.2 as the sampling interval & approaches zero. From (2.16) the expected summit height
depends on p,, p, and p, through @ and b, and

limag =~1 and limd = 0. (2.24)
>0 >0

The autocorrelation function of the surface can be approximated by

p(h) = 1+ Dyhi2/21+Dyht /41 +o(A), (2.25)
where D, and D, are the second and fourth derivatives of the autocorrelation function at the
origin. If we let 7 = —Dy(D)F < 3, (2.26)

the limiting value for the expected five-point summit height is given by
16

},i_r,l(} E(Z|T5) = n+ 2 arcsin § + 44/2 (3m ¥y (2.27)
= 1.688(3m)¥9.
Nayak (1971) showed that the expected continuous summit height for the two-dimensional
e E(Z|Yy) = [4/2/x] (3m)t
= 1.801(}n)ty, (2.28)
which is comparable with the expected continuous peak height for one dimension,
Z|1,) = (3m)ty, (2.29)

a result given by Whitehouse & Phillips (1978). So it is seen that the limit of the expected five-
point summit height is 699, larger than the expected peak limit, as opposed to 809, larger
than the expectation of the distribution of summit height for the continuous definition of
Nayak (1971). However, this is only an overall reduction of about 6%, and suggests that the
discrete five-point definition may be adequate.

It is possible to obtain @@ (z,[(1 —p,)/(1+p1)]E; Ve) by the methods of Plackett (1954) and
Cheng (1969), and hence to obtain the probability density function of the limiting distribu-
tion of the five-point summit height as £ converges to zero. This is given by

}bin(l)f(zoln) = 12n¢(z,) (n+ 2 arcsin } +44/2)"1
x {(1 =% [$(w) +wD(w)]2+5(1 —39*) DO (w; (§—9°)/(1 -7

— (1= 92) D®(w; 0) +4(1 —42) TO(w, (23927}, (2-30)
where T®(w, v) = (2n)71 f: (1422 exp [ —3w?(1+x2)]dx (2.31)
and w = y(1—n2)~tz, (2.32)

This probability density function is compared with the probability density function of con-
tinuous summit height, given by

S(z|Tx) = 39(2—392)3 $(0) zp((1 - 39?2 2)
+3y3 (22— 1) D(n[3/(1 491 2) 4(2)
+2(1 =922 O({3/[(1—72) (1392 H9z) g((1—92)2),  (2.33)
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which was obtained by Nayak (1971), for three values 4 = 0, 4/} and /% in figure 1. For
7 = 0 both distributions are the standardized normal distribution. When 3 = /%, the con-
tinuous summit height probability density function is

F(2Ty) = 2y~ 1+ 20[$()]}$(2), for z > O,
=0, for z<0, (2.34)

while the limiting distribution of the five-point summit height is given by

. 8nd(2o) [(225— 1) (P(V220) —3) +4/220$(4/22)]
’l‘ir)r;f(zoli’s) - m+ 2 arcsin  +44/2

=0, for z; <0. (2.35)

, for zy >0,

Ficure 1. The probability density functions (p.d.fs) of the distribution of summit height (full line) and
the limiting distribution of the five-point summit height (broken line) for 4 = 0, \/} and ,/%.

Nayak (1971) used the definition of mean summit curvature Kn, given by Sokolnikoff (1951)
as minus the average of the second partial derivatives in orthogonal directions. With this
definition Nayak (1971) showed that the conditional distribution of continuous summit
height given curvature is a normal distribution with

E(Z|Ky, V) = $1Kn(Dy) (2.36)
and var (Z|Ky, Yy) = 1§72 (2.37)

This is also the limit of the conditional distribution of Z, given C?. Hence, from (2.21), the
limit-as % tends to zero of the expected five-point summit curvature will again be 6 9, smaller
than the expectation of the continuous summit curvature.
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2.4. Models of the autocorrelation function and the effect of the sampling interval

To study the effect of the change of the sampling interval % on the digital measurements of
an isotropic surface it is necessary to specify a model for the autocorrelation function of the
surface. The model first suggested by Whitehouse & Archard (1970) was the negative expo-
nential function, which simulated the rather idealistic finished machining marks obtained in
very good grinding, so that

plt) = exp (1)), (2.38)
Although useful as a first step this model had theoretical as well as practical problems. White-
house & Phillips (1978) showed that this model did not produce satisfactory limiting results
as h tends to zero, because the derivatives are not defined at the origin.

For a model to fit in with observed autocorrelation functions on surfaces it would be desirable
to have a multiplicative periodic function in the autocorrelation function. However, the prob-
lem of the derivatives remains. To overcome this problem Whitehouse & Phillips (1978)
‘smoothed’ the exponential-cosine function at the origin to give

p(t) = exp [ = |t|4,(6)] cos [2n0t4,(6)] + exp [ — B|t|4;(6)] sin [2n6,t4,(0)]/2n6,, (2.39)

where B = [3(1+4n263) — 4n202]%, (2.40)
1 20
and 40O) = e [1 * b (1 /40)]' (241)

This was called the ‘model 1’ autocorrelation function. For large £ the dominant term of this
autocorrelation function is the first, which reflects the behaviour observed for a number of
types of engineering surfaces, especially those generated by single-tool-tip processes. If 6, = 6,
as was chosen by Whitehouse & Phillips (1978), then the effect of the second term is small.
Whitehouse & Phillips (1978) used this model with 4,(6) equal to unity. However, using (2.41)
ensures that

[Tiowiac -1, (2.42)

so that the ‘correlation length’ does not vary with 6. This model will be used with 6 = 0, §,
+ and 1, which will satisfy the condition on % of (2.26). The value of 4 can be obtained from

the derivatives
D, = [1-28—(2n0)*][4,(0)]* (2.43)

and D, = {1—6(2n0)+ (2n0)* + 4[2/% — 1 + 3(2n0) 2]} [4,(6) ]~ (2.44)

An alternative approach to the above ‘smoothing’ technique is to replace the negative
exponential function by another function that is smooth at the origin but will behave like the
negative exponential function for large ¢. One possible function is

p(t) = sech (int). (2.45)
Hence an alternative periodic autocorrelation function model is given by

p(t) = sech [§mtd,(0)] cos [2n64,(6)], (2.46)

® (-1)70
where Ay(0) = sech (2n0) +2 X o 12+ 1)75 sinh (=(3r + 1)/50)"

(2.47)
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This is called the ‘model 2’ autocorrelation function. It has the advantages over model 1 of

having only one parameter, i.e. 6. Both models are representative of real surface autocorrelation

functions: the former is more useful for single-point machining and the latter more useful for

multiple-point machining and primary forming methods.

0.3

pr (Y5)

Ficure 2. The variation of the expected density of five-point summits with the spacing % between ordinates.
The exponential autocorrelation function and four examples of the model 1 autocorrelation function are
shown, and the figure illustrates how all expected summit densities associated with model 1 reduce to zero

ath = 0.

For the model 2 autocorrelation function the derivatives are given by
D, = — (3m)2[1 + (40)7] [4,(0) 7,
and _ D, = (3n)*[5+6(40)*+ (40)4] (4,(0)]*
Hence, from (2.26), 7 = {[1+(40)2]/[5 + (46)2]}%.
The upper bound on 7% implies that
0 < |J7/4 = 0.6614.

(2.48)
(2.49)
(2.50)

(2.51)

The model 2 autocorrelation function will be used with & = 0, { and %, which will satisfy the

condition on 7, given by (2.51).

29
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Ficure 3. The variation of the expected density of five-point summits varies with the spacing % between ordinates.
The exponential autocorrelation function and three examples of the model 2 autocorrelation function are
shown, and the figure illustrates how all expected summit densities associated with model 2 reduce to zero
ath = 0.

The two functions 4,(0) and 4,(0) are both equal to unity when 6 is zero and both converge
to 2/m as 6 tends to infinity. For the positive values of € chosen here the values of 4,(0) and
Ay(0) are approximately 3.

The results obtained by Whitehouse & Phillips (1978), for the distributions obtained for
digital measurement in one dimension, exhibited periodic behaviour which depended on 6.
This was because the distributions were functions of p, and p,, which were rational functions
of h. However, because the expectations that are to be considered in two dimensions depend
also on the parameter p; = p(4/2 &) this simple periodic behaviour does not hold.

The first two-dimensional parameter investigated, the expected five-point summit density,
given by (2.19), is shown in figures 2 and 3 for the autocorrelation functions for models 1 and
2, respectively. In all cases the expected five-point summit density converges to 0.2 as & tends
to infinity. As /4 approaches zero the expectation approaches zero as these two autocorrelation
functions are ‘smooth’. (In contrast the expectation converges to 0.125 for the negative
exponential autocorrelation function.) As 6 increases there are quite large oscillations in the
value of the expectation for model 1. The frequency of the oscillations is about the same as
that for the expected peak density for measurement in one dimension (given by Whitehouse &
Phillips (1978)). The variation is of roughly the same order of magnitude as for peak density.
For model 2 the variation is similar to model 1. ‘

Secondly, the expected five-point summit height; given by (2.16), is shown in figures 4 and
5 for model 1 and model 2, respectively. In all cases as % tends to infinity the expectation
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E(Z,|Y5)

Ficure 4. The variation of the expected five-point summit height with the spacing & between ordinates. The
figure gives the limiting values at the origin for four examples of the model 1 autocorrelation function and
the asymptotic value for £ tending to infinity. For key see figure 2.

converges to 5[1 — (§n) arccos 4]/nt = 1.163. As k approaches zero the expectation approaches
the limit given by (2.27) for both models 1 and 2, as these two autocorrelation functions are
‘smooth’. (In contrast the expectation converges to zero for the negative exponential auto-
correlation function.) The limits are much smaller for model 1 than for model 2 as # approaches
zero. The values of 6 can be larger for model 1 than for model 2, while still satisfying the
condition on 7, given by (2.26). As 0 increases there are quite large oscillations in the value of
the expectation for model 1. However, the variation is of roughly the same relative order of
magnitude as for the expected peak height. For model 2 the variation in the expectation is
much less because of larger limiting values obtained as 4 approaches zero.

Thirdly, the expected five-point summit curvature given by (2.21), is shown on a logarithmic
scale in figures 6 and 7 for model 1 and model 2 respectively. In all cases the expectation
approaches zero as A tends to infinity. As & approaches zero the expectation converges to
1.125 (3nD,)}, for smooth autocorrelation functions. For model 1 there is hardly any variation
as ¢ varies, for positive values, but for model 2 there is a more noticeable change. (In contrast
the expectation tends to infinity for the negative exponential autocorrelation function.) For

29-2
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0.6 1.58

1.163

E(Z,|Y5)

| ] | | | | A
4

Ficure 5. The variation of the expected five-point summit height with the spacing & between ordinates. The
figure gives the limiting values at the origin for three examples of the model 2 autocorrelation function, and
the asymptotic value for % tending to infinity. For key see figure 3.

model 1 there are quite large oscillations in the value of the expectation. Again the frequency
of the oscillations is higher than that for the expected peak curvature for measurement in one
dimension (given by Whitehouse & Phillips (1978)). However, the negative exponential auto-
correlation function is no longer a lower bound on the expected five-point summit curvature
as it was for the expected peak curvature. For model 2 the oscillations in the value of the
expectation with @ are smaller, with the expectation following the general downward trend
as 1 increases.

3. PRACTICAL VERIFICATION OF THE THEORY
3.1. Requirements of the apparatus

To test experimentally the theoretical results of the discrete analysis in one dimension is
comparatively easy provided that the stylus instrument has a uniform tracking speed, so that
the spacing between ordinates is genuinely constant. Unfortunately, it is not so easy to test the
theoretical results obtained for two dimensions because of the need to measure a grid of ordi-
nates on the surface, in which the mean level of the tracks must be truly related by reference
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E(GP|Ys5)

1

10

Ficure 6. The variation of the expected five-point summit curvature with the spacing & between ordinates.
The figure gives the limiting values at the origin for four examples of the model 1 autocorrelation function.
The expectation is expressed on a logarithmic scale. For key see figure 2.

to an external datum. The mean levels cannot be arbitrary, otherwise the scanning of the
data to find summits and their heights, and other parameters becomes meaningless. Ideally,
the ordinate heights from each track should be related without vertical shift to those ordinates
in any other track. In order that this severe constraint can be achieved, a special stage has been
designed, as shown in simplified form in figure 8.

Incrementing the surface in small equal steps, to get a grid of tracks, is another difficult
problem. Finally, the digital record of each track must start at the same position in space, at
least transversally, relative to the traverse of the surface-measuring instrument.

3.2. Description of the apparatus

The apparatus used is shown in figure 9. It consists of a Talysurf 4 surface-measuring instru-
ment manufactured by Rank Taylor Hobson of Leicester, U.K., with special stage and datum
attachment, shown in figures 8 and 10. Attached to the Talysurf is a MmiNc-11 minicomputer
made by the Digital Equipment Corporation of America. This in turn is connected to the
pPRIME computer of the Engineering Department of the University of Warwick. Between the
stage and the Talysurf traversing unit is positioned a fibre optic connected to a Valpitronic
compact relay unit, which is used to trigger the MING computer in the same place for each track.
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Ficure 7. The variation of the expected five-point summit curvature with the spacing 4 between ordinates.

The figure gives the limiting values at the origin for three examples of the model 2 autocorrelation function.
The expectation is expressed on a logarithmic scale. For key see figure 3.
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Ficure 8. Kinematic arrangement and lateral movement:
(a) plan view; () front elevation, sides removed.
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The most demanding mechanical element in the set-up, apart of course from the Talysurf;
is the stage shown in figure 8. This has been designed to provide the mechanical coherence
required between tracks. Basically it comprises two precision glass blocks A and B. Both are
constrained by five contacts allowing one degree of freedom. B is a 10: 1 tapered block used for
moving the block A via the ball H by small known increments. This is achieved by turning nut
C. A turn through one scale unit on the periphery of C corresponds to a movement of A of
2.4 pm.

Although block A has five constraints imposed upon it by means of ball contacts, two of these
are variable, via nuts E and F, to allow adjustments in the tilt of the specimen (which is
placed upon A) in the roll and yaw angles. The roll adjustment includes the device of a ball-
on-screw E pushing onto an offset ball in the vertical slot at D. The bottom face of A and the
two edges have had to be especially manufactured, for squareness, straightness and smoothness,
to ensure that no unwanted rotations are produced when the block is moved transversally
relative to the direction of motion of the pick-up. Typical specifications for the block are
straightness 0.1 pm per mm, squareness 2", and smoothness 0.05 um.

The other angular adjustment, pitch, is provided for by direct adjustment of the Talysurf
datum, which is specifically designed to give this feature for levelling a profile graph. This is
shown in figure 10. The accuracy of, and operation instructions for, this adjustment are well
known and are included in the manufacturer’s literature. Also shown in figure 10 is a device
designed to lift the stylus just clear of the surface after every traverse. Basically it consists of a
precise way of lifting the ‘mechanical steady’ of the datum attachment by such a small amount
that the ligament hinges on the traversing unit are not strained when the Talysurf gearbox is
racked back. A clearance of just 500 pm is maintained.

3.3. Checks and procedures

Standard tests were made on the apparatus to check whether or not the minimum specifi-
cation was being met. The first test was repeatability. A number of traverses in the same position
were digitized and analysed. This tested three things: the vertical mechanical coherence of the
Talysurf, the traversing speed, and the repeatability of the digital triggering of the minc.
(Each of these factors is critical in verification of the theory. Vertical repeatability within a
track has to be considerably less than the texture height. The repeatability was better than
29, of the surface texture, which turned out to be about 0.02 pm.) Relatively rough surfaces
were used in the verification because the instrumental specification, both in terms of vertical
precision and digital triggering, could be relaxed, as the errors were a correspondingly smaller
fraction of the dimensions involved. The sampling interval was fixed at 2.4 pm, this being the
nominal stylus-tip dimension in the direction of traverse. Successive repeat traverses were cross
correlated to establish whether the digital initiation signal from the fibre optic was satisfactory.
This means that the triggering error should be much less than the spacing between samples,
i.e. 2.4 pm. In the event, this was found to be an impossible criterion, because of the lack of
repeatability of the light levels needed to trigger the fibre optic relay and the physical diameter
of the fibre pack itself, which was 2 mm. Tests with the use of cross correlation showed that
errors of the order of 5 pm or more could be expected in synchronization. For this reason,
when building up the grid of ordinates, each track was repeated three times and averaged to
reduce the effect of this spatial discrepancy.

Tests were made on the line of traverse of the stylus by lightly carbonizing a microscope
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slide and tracking the stylus repeatedly over the same place on the slide. An overall track
width of twice the diamond width was encountered after a large number of repeats. This
conformed with the manufacturer’s specification.

3.4. Tests on a manufactured surface

A typical surface manufactured by electro-discharge machining was used for a practical test.
An example of a profile graph is shown in figure 11. Topographic data for the surface include
an arithmetic average (R,)-value of 3 pm. An isotropic surface was chosen for simplicity of
instrumentation.

Ficure 11. Typical engineering surface (one-dimensional profile), manufactured by electro-discharge machining.
Vertical magnification 1000; horizontal magnification 20; R, = 3 pm.

Because of the problems of synchronization the spacing between tracks was fixed at 7.2 pm
and the sampling interval at 2.4 pm. Seventy-five tracks were taken over the surface in 25
different places, each track being repeated three times and averaged. The amount of data for
each traverse was 2099 digital ordinates with a resolution of ten bits. This amounted to a total
of over 150000 digital measurements. The data was relayed via the MING to the PRIME computer
for processing. Before the measurements were taken the total extent of the surface to be investi-
gated was scrutinized for deviations in level. The adjustments E, F and the datum were altered
to give a best fit plane by eye. Because the surface was rough and its manufacture well con-
trolled only small adjustments were found to be necessary. The use of digital filtering or
regression techniques for removing slopes was rejected, because of the possibility of distorting
the height of the true mean line from one track to the next.

To test the theory three parameters were chosen for comparison, the first relatively insen-
sitive to sampling, the second one of the most sensitive and the third about average. These
were the expected five-point summit density, the expected five-point summit height and the
expected five-point summit curvature, respectively.

The nature of the comparison between theory and practice was as follows. The mean five-
point density, height and curvature for a variety of ordinates and track spacings were observed
by averaging over the 25 tracks of the two-dimensional grid of data obtained from the surface.
The values so obtained were then compared with the expected values predicted from the
formulae derived in §2.2, with estimated values of p,, p, and p; obtained from the practical
(observed) autocorrelation function shown in figure 12. For example, if the observed mean
summit parameters were obtained from the surface data grid corresponding to a 7.5 um
spacing between tracks then the values of the autocorrelation function would be taken from
figure 12 at values of 7.5 pm, 15 pm, and 7.5,/2 pm.

The results of the comparison are shown in figures 13, 14 and 15 for the expected five-point
summit density, the expected five-point summit height and the expected five-point summit
curvature respectively.
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Ficure 12. The observed autocorrelation function of the electro-discharge-machined surface.
The surface was measured at intervals of 2.4 pm over 25 tracks.
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Ficure 13. The observed mean density of five-point summits, over 25 tracks, for sampling intervals from
7.2 to 86.4 um, and the expected density of five-point summits obtained from the observed autocorrelation function.

3.5. Discussion of test results

The results show a significant degree of agreement between the sample means obtained from
the experimental data and the theoretical formulae for the expectations, with p-values esti-
mated from the measured autocorrelation function. So it seems plausible to assume that the
theory and practice do agree. Any small deviations can be attributed to discrepancies between
the surface used and a truly Gaussian one. For this particular surface there is a general shift
in both figures 14 and 15 to indicate that the actual summits are sharper and higher than those
predicted by the theory. This can be attributed to the fact that the test surface has a negative


http://rsta.royalsocietypublishing.org/

y A
AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

-
A\

' \

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TWO-DIMENSIONAL PROPERTIES OF SURFACES 461

15

;::;P xxxxxxx

£ o 116

g 1.0F x

2

£

[«

£

$ 0.5}

[3=1

g 0.34

g

| I W N NN NS N (RN (R N A N |

0 50 100

sampling interval/pm

Ficure 14. The observed mean five-point summit height, over 25 tracks, for sampling intervals from 7.2 to
86.4 um, and the expected five-point summit height obtained from the observed autocorrelation function.
The height is non-dimensionalized by dividing it by the estimated standard deviation of the surface heights.

—
<
>

mean five-point summit curvature
5!

L]
0 50 100

sampling interval /um

| |

Frcure 15. The observed mean five-point summit curvature, over 25 tracks, for sampling intervals from 7.2 to
86.4 pm, and the expected five-point summit curvature obtained from the observed autocorrelation function.
The curvature is expressed on a logarithmic scale.

skew of 0.8; a property of electro-discharge machined surfaces. This has the effect of slightly
lowering the mean line of the surface relative to the symmetrical one expected for a Gaussian
surface, which will give the observed result.
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4, DiscussioN

It having been established with a real surface that the theory does to within a high level of
confidence agree with practice in the two-dimensional situation, the question arises as to the
practical implications of the theory.

One important point is the fact that the discrete parameters for two-dimensional asperities
such as summit height, density and curvature have different values to the corresponding para-
meters obtained by using one-dimensional discrete theory. This is not an unexpected result
in view of the fact that there are differences in the equivalent continuous case. For example,
the expected summit height is higher than the expected peak height by about 809, in continuous
theory, whereas in the discrete theory it is higher by 699,. The difference between the con-
tinuous and discrete theories arises because it is difficult to develop a numerical model that
covers all two-dimensional summit possibilities. The reassuring fact to be revealed by this
exercise is that by using the simplest numerical model the differences between the continuous
and discrete theories are only small: a 6%, overall decrease for the expected summit height
and curvature is about the difference involved. This is not likely to be of practical significance.
What are significant are the very big differences between the one- and two-dimensional esti-
mates of parameters: any experimenter who thinks that the measurements taken from a profile
of a surface actually estimate the real parameter values will be seriously in error. Clearly, if a
nine-point model for a summit had been used rather than the five-point model the differences
between the continuous and discrete theories would have been smaller.

Another question of importance concerns the scale of size of asperities and how they appear
in a discrete analysis. This is important because asperities of different size have different func-
tional significance. It may be considered easy to investigate the properties of asperities on the
surface having fixed size simply by choosing the relevant ordinate spacing. For large spacing
the ordinates would be uncorrelated, and the asperities picked out would correspond to the
large-scale structure, whereas a small spacing would pick out a small-scale structure. Unfortu-
nately this simple approach is prone to misinterpretation: considerable care has to be taken
when using the results obtained from such measurements, for it is well known that aliasing effects
can occur when data are sampled. Normally for maxima these effects are not too serious. How-
ever, in the digital measurement of surfaces, aliasing effects can be accentuated by an ‘inter-
locking’ produced between the sampling interval and the numerical model used to define a peak
and its parameters. This is similar to the errors introduced by aliasing in the measurement of the
spectral density by digital sampling. For one-dimensional parameters they can be difficult to
unravel (Whitehouse & Phillips 1978). However, for two-dimensional parameters they is not. To
illustrate this, a comparison will be made between the expected five-point summit density and
the model 1 autocorrelation function for various ordinate spacings. Consider the expected five-
point summit density for a highly oscillatory surface as shown in figure 16. For small values of
h the result will be masked by instrumental effects such as stylus integration, the limiting optical
resolution of the instrument, or more likely quantization effects. This region is marked a in
the figure. For spacings up to about one half of the correlation length the results will be valid
for the surface (region 4). If the ordinate spacing corresponds to one half of the period of
oscillation (as revealed by the autocorrelation function) then the numerical model will ensure
that the dominant frequency will determine the value of the parameter, in this case, the density.
It would take a value of almost 0.5. For integral multiples of this spacing the numerical model
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will always lock itself on to the dominant wavelength on the surface, which will cause repeated
maxima. These maxima will be of decreasing height as & increases because of the decrease in
correlation between the ordinates. It is in this region, where the spacing is comparable with
the correlation length, that the interlocking effect is so marked (region ¢). Results obtained in
this region should be treated with caution. As the spacing between ordinates increases much
beyond this value, the behaviour becomes dominated by the numerical model itself (region d).
For expected peak density in which a peak is defined by a three-point numerical model the
probability of an ordinate being a peak will inevitably tend towards a value of one third
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Ficure 16. The relation between the expected five-point summit density (~ - —) and the autocorrelation
function for an oscillatory surface ( ) as the spacing between ordinates / varies.

irrespective of the type of surface. For expected summit density where the summit is defined by
five points the limiting value is 0.2. Other parameters exhibit similar behaviour. That there
is a definite relation between the parameters and the autocorrelation function can be seen on
figure 16. The expected summit density is very nearly the mirror image of the autocorrelation
function. ‘

This type of pattern is not so clearly shown in the profile parameters as it is in the two-
dimensional parameters. For example, when the spacing is equal to the dominant wavelength,
the numerical model in effect does not see the wave, and the peak parameters resort to those
of the autocorrelation envelope which, for the two surface models used, is an exponential.
Summit parameters, however, do not behave in this way. This can be seen in figure 2 for
60 = 1. The density curve only converges to the exponential when £ is large and both curves
reflect the numerical model. From these considerations, it seems clear that the two-dimensional
assessment makes the curves of parameter value against sampling interval much better behaved
and more representative of the true surface values.
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One common feature of both the one-dimensional and two-dimensional results is that the
magnitude of the variation of a parameter with % is about the same. A factor of variation of
three or even four to one is possible for expected peak and summit density and curvature.
Hence it is very important for an investigation that a value of % be confined to the useful
region where it is less than about one half the autocorrelation length. The difficulty is that
of picking 4 such that it falls in this region, and at the same time is relevant to the function
of the surface. In picking % to satisfy both these conditions a knowledge of the correlation
length is desirable, a point that will be addressed later.

Detailed discussion of the behaviour of these parameter curves as a function of % is given in
§§2.3 and 2.4. However, two points are pertinent. One is that the values of all parameters for
all surfaces vary considerably even in the useful and unambiguous region where 7 is less than
one half the autocorrelation length, a point that has considerable functional importance.
Another is that the limiting values as & tends to zero are different for different surfaces. These
differences will be difficult to measure if stylus radii are made much larger than at present.

The property of the parameter values for two-dimensional surface detail having been estab-
lished, the question arises as to whether it is absolutely necessary to resort to measuring the
whole surface grid of ordinates or whether a simpler method could be devised. One point that
should be made regarding two-dimensional measurement concerns coverage. In the same way
that the discrete analysis does not converge to the continuous, it is impossible to cover a surface
with a sufficient number of measurements to ensure that any freak or non-typical behaviour
will be seen. Stylus techniques are not really suited for such work. Stylus methods are suitable
for quantifying average behaviour of surfaces. For this reason it seems plausible to suggest that,
in so far as the autocorrelation function is a good measure of the average statistical behaviour
of a surface, it could form the basis for a simple method for estimating other average surface
properties. The work reported here suggests that this is indeed possible. Furthermore it has
emerged from the experimental part of this investigation just how difficult it is to measure a
grid of digital data points on a surface. It has been found to be difficult even with unconven-
tional equipment. The dual problem of maintaining a common mean level of tracks and
preserving sampling synchronism between tracks has proved to be a demanding task, and it
would be unreasonable to expect an investigater doing research into functional properties to
have the time or the effort to achieve this. It seems, therefore, that a useful side benefit of
this theoretical investigation has been the devising of a practical way of measuring the two-
dimensional average properties of surfaces. In fact, it may well be that this technique is the
only practical way of measuring two-dimensional parameters without highly specialized
equipment.

For an isotropic surface one profile track is needed from which the autocorrelation function
can be estimated. Then the r.m.s. value of the surface height and the values of p(k), p(2h) and
p(y2h) are found, and from these the parameter values. The problem is more complicated
when the surface is neither isotropic nor unidirectional, but somewhere in between. The first
step is to determine the degree of isotropy. One simple pilot method is to take two profile traces
at right angles and to estimate the peak densities by eye. If these are 4}, ; and d,, , respectively
a third track could be taken at an angle of arctan (d, ,/d,, ;) to the first direction, and the value
of d, ; obtained. If the d,, ; are all equal then the surface is isotropic. If they are different then
the horizontal scales in the different directions can be condensed to make the surface appear to
be isotropic if this is permissible functionally. The ratio d,, ,/d,, ; could be used to do this. If
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the ratio is 1/k and we make the assumption, which is not always justified, that the autocorre-
lation function in different directions differs only by a scale factor in the horizontal direction,
then the autocorrelation values corresponding to p(h), p(2h), p(kh), p(2kh) and p(h(1 +k2)%)
can be evaluated directly from the autocorrelation function of the one-dimensional trace which
has been taken across the lay. If £ is very large the problem resolves itself into the one-dimen-
sional method reported elsewhere (Whitehouse & Phillips 1978). If it is reasonably small, say
1-4, the values of p(h) and p(kh) can be averaged to give p; and so on without too large a
deviation from the theoretical results.

A full theoretical treatment would suggest that to take into account all possibilities seven
values would be needed. That is the r.m.s. value of the surface; p(h,), p(2h;) in one direction;
p(hy), p(2h,) in the orthogonal direction; and the two diagonal correlation values between the
directions, namely the non-isotropic versions of ps. In practice because of the symmetry of
generation of surfaces, six or even four values will suffice.

One problem that needs to be resolved before the formal digitization of a surface is the
assessment of the correlation length. Once this is known it is possible to verify the validity of
the parameters. Some idea can be obtained from the zero crossing density of a profile graph
after any general trend has been removed by eye. There is a rough relation between the average
spacings between up-crossings and the correlation length which is only weakly dependent on
the type of surface. A simple rule of thumb is that they are almost equal. Further work is being
done to refine this simple method. One possibility is to use the ratio of peak to crossing densities
as a way of identifying different types of surface. From this a more exact multiplier of the
crossing density could be looked up to give the autocorrelation length.

The only disadvantage of this correlation method of assessing two-dimensional parameters
is that there has to be some restriction on the amount by which the surface can be allowed to
be non-Gaussian. Current tests indicate that the theoretical results will be valid provided that
the skew value is within + 1. Certainly the practical advantages of the method outweigh the
small theoretical restrictions.

In summary, this paper represents a sequel to the two earlier papers in this field (Whitehouse
& Archard 1970, Whitehouse & Phillips 1978). It is now possible to relate the two-dimensional
digital parameters that would be measured from a surface to the results calculated from con-
tinuous and discrete theory. It has been shown that differences must occur in practice, but now
that the nature and extent of these differences are known they can be taken into account.

The most important points to emerge from this paper are:

(i) There are likely to be large differences between the discrete properties of different
surfaces.

(ii) There is a significant difference between parameters measured digitally from a one-
dimensional profile of a surface and those measured from a two-dimensional grid.

(iii) There is a considerable variation in parameter estimates as the scale of size is changed
owing largely to a complex interaction between the numerical model and the sampling. Various
limits have been laid down to reduce the effect of these variations. It will be necessary in the
future to tighten up the control of the digital analysis of surfaces now being lightly undertaken
by many manufacturers.

(iv) Itis now possible by using a small number of correlation values to evaluate the average
values and dispersions of summit parameters of a surface without our having to embark on very
elaborate and difficult experimentation.


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

o \

/A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

466 D.J. WHITEHOUSE AND M. J. PHILLIPS

What remains to be done is to assess the properties of the gap between two surfaces by using
the techniques described above. The advantages of using correlation techniques for this is that
the correlation values for the two surfaces can be added directly together.

As in the other papers in this series a major point to emerge is the power of the combined
ability of random process analysis and numerical techniques to quantify and describe para-
meter behaviour. It may be that the next major step in the theory of surface description and
behaviour will be the development of statistics that more nearly mirror the way in which
surfaces are generated and the way in which they behave in different engineering applications.

Finally, we would like to acknowledge the help of Dr J. Raja of the Department of Engineering,
University of Warwick, in collecting the data from the surface, and of the Research Board of
the University of Leicester in awarding a grant to M. J. Phillips.

APPENDIX

Results are given for truncated Gaussian random variables. There is a constant correlation
coefficient between the random variable Z, and each of the m random variables X, and the
correlation matrix of X has a constant row (or column) sum. So

]l )] =

where V is a correlation matrix such that

V1 = Al, (A 2)

where A > md? (and 1’ = (1,1, ..., 1)). From (A 1)
U=1X ~ N[0, mA], (A'3)

(Zy|X = %) ~ (%|U = 2)
~ N[(d/A)u, 1 —md?/A] (A4)
and (X|Z = z;) ~ N[dz,1, V—d?J] (A 5)
(where J = 11"). So the conditional distribution of Z; given X only depends on X through
U(=1'X).
Let X be truncated below, at 0, and the event {X > 0} be denoted by ¥. Then

pr (1) = @m(0; V), (A 6)
where B(y’; V) f " f " g (w; V) dads, ..y, (A7)

(with @™ (d1’; V) = @™ (d; V), DO(y; V) = ®(y/V?) and ¢O(y; V) = $(y/V?})/VE). Now as
Z, is not truncated, (Zo|X = %) ~ (Zy|u), (A 8)
as given by (A 4), while the probability density function of (X|¥) is given by

S(*|T) = ¢g(«"5 V) /pr (V) (A9)
and, from (A 5), pr(Y|Z = z)) = @™ (dzy1'; V—d2J). (A 10)


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TWO-DIMENSIONAL PROPERTIES OF SURFACES 467

Hence the probability density function of Z; given 1 is given by

S(zo|X) = [pr (¥]20)/pr (1)]6(20), (A 11)
with the use of (A 9) and (A 10). Therefore from (A 4) and (A 8)

E(Z,|Y) = (d/A)E(U|T)

= mdg(0) &™1(0; B) /pr (), (A 12)
as Tallis (1961) has shown that using (A 9)
pr (1) E(X|T) = A$(0) 8m-1(0; B) 1, (A 13)

where B is the variance—covariance matrix of (X;, X,, ..., X_;) given X,. Hence from (A 12)
it is seen that the expectation of the non-truncated random variable Z; given X (which is
truncated) equals the product of m, the number of truncated random variables, 4, the common
correlation coefficient between Z, and any of the truncated random variables, ¢(0), and the
ratio of two orthant probabilities, one of which is for m — 1 and the other for m random variables.
The probability density function of the conditional distribution of U given 1" is given by

S@|¥) = [pr (Y|w)/pr ()] (), (A 14)

where f(u) is the probability density function of the untruncated distribution given by (A 3).
Because of the result given by (A 8) the probability density functions of both the distributions
of (Z,, U|Y) and of (U|Z,, 1) are given by the product of pr (¥|«) and the respective prob-
ability density function of the untruncated distribution, suitably normalized. So they are of
the same form as (A 14).
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Ficure 10. General view of precision worktable with curved datum attachment
of stylus instrument in position.
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